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SUMMARY 
A simple technique is presented that allows a numerical solution to be sought for the vertical variation of 
shear stress as a substitute for the vertical variation of velocity in a three-dimensional hydrodynamic model. 
In its most general form the direct stress solution (DSS) method depends only upon the validity of an eddy 
viscosity relation between the shear stress and the vertical gradient of velocity. The rationale for preferring a 
numerical solution for shear stress to one for velocity is that shear stress tends to vary more slowly over the 
vertical than velocity, particularly near boundaries. Consequently, a numerical solution can be obtained 
much more efficiently for shear stress than for velocity. When needed, the velocity profile can be recovered 
from the stress profile by solving a one-dimensional integral equation over the vertical. For most practical 
problems this equation can be solved in closed form. 

Comparisons are presented between the DSS technique, the standard velocity solution technique and 
analytical solutions for wind-driven circulation in an unstratified, closed, rectangular channel governed by 
the linear equations of motion. In no case was the computational effort required by the velocity solution 
competitive with the DSS when a physically realistic boundary layer was included. 

The DSS technique should be particularly beneficial in numerical models of relatively shallow water 
bodies in which the bottom and surface boundary layers occupy a significant portion of the water column. 

KEY WORDS Direct stress solution Vertical velocity profiles Three-dimensional circulation model 
Spectral methods 

INTRODUCTION 

In large part owing to their computational efficiency, two-dimensional, vertically integrated 
hydrodynamic models have become an important and widely used tool for modelling horizontal 
circulation in coastal, shelf and even open ocean settings when vertical density stratification can 
be neglected. Although more sophisticated approaches have been developed for specialized 

two-dimensional hydrodynamic models are typically limited to representing 
bottom stress as a collinear function of the depth-averaged velocity and parametrizing the shear 
dispersion3 (i.e. the contribution from the vertical variation of horizontal velocity to the depth- 
averaged convective acceleration terms) as a ‘diffusion-like’ process. These approximations can be 
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implemented rigorously only when the vertical profile of horizontal velocity can be assumed a 
priori, such as for simple tidal flows.3 Unfortunately, it is impossible to assume a relation between 
bottom stress and depth-averaged velocity that is generally valid for flows such as Ekman layers 
or wind-driven circulation in enclosed or semi-enclosed basins (since the alignment of the depth- 
averaged velocity differs from that of the bottom stress by an unknown angle), or when wave 
orbital velocities or suspended sediment concentration gradienis are significant near the bottom 
(since both can contribute to the bottom stress). It is also impossible to assume values for the 
shear dispersion coefficients for complex flows. Finally, if velocities generated by a two-dimen- 
sional hydrodynamic model are used in a transport model, it is impossible to account for 
variations over the vertical in the magnitude and direction of the advective transport terms in 
complex flows. For these reasons it is often necessary to use a model that explicitly includes the 
vertical variation of horizontal velocity. 

A significant problem for numerical models that explicitly include the vertical variation of 
horizontal velocity is the presence of potentially steep vertical velocity gradients near the bottom 
and free surface boundaries and near sharp density interfaces. To resolve these gradient regions, 
existing numerical models must use fine discretizations over the vertical (at least locally). Owing 
to the substantial computational burden that results, the gradient regions are often omitted and 
their effects on the remainder of the water column approximated by various slip  condition^.^, 
This approach is particularly appropriate in deep water where the depth is large in comparison 
with the thickness of the boundary layers. However, in coastal and shelf applications the surface 
and bottom boundary layers occupy a significant portion (if not all) of the water column. 
Therefore it is preferable to explicitly model the entire water column if this can be done at 
reasonable cost. 

It is well known both theoretically and experimentally that, contrary to velocity, shear stress 
varies slowly near Consequently, it should be much more efficient to discretize 
and solve numerically for the vertical variation of shear stress near a boundary than it is to solve 
for the vertical variation of velocity. In this paper a technique is presented to solve for the vertical 
variation of shear stress rather than velocity in a numerical, three-dimensional model of nearly 
horizontal circulation. An initial demonstration of the usefulness of this direct stress solution 
(DSS) technique is presented by comparing it with a standard velocity solution (VS) technique 
and with analytical solutions for steady state, periodic and transient test cases. 

FORMULATION 

Using a gradient eddy viscosity hypothesis to relate shear stress and horizontal velocity, 

where, H ( x ,  y ,  t )  = q + h - zo is the water depth from the top of the effective bottom roughness to 
the free surface, q(x ,  y, t )  is the water surface elevation above the still water level, h(x, y ,  t )  is the 
nominal water depth below the still water level (bathymetric depth), z , (x ,  y, t )  is the zero-velocity 
height or effective bottom roughness height, o = a + (a - b)(z - q)/H is a stretched vertical co- 
ordinate where o = b  at the top of the effective bottom roughness and o = a  at the free surface,’ 
T ~ J X ,  y ,  z,  t )  and z Z y ( x ,  y ,  z ,  t )  are vertical shear stresses in the x- and y-directions, U ( x ,  y ,  z, t )  and 
V ( x ,  y ,  z,  t )  are horizontal velocities in the x-  and y-directions, E Z ( x ,  y, z ,  t )  is the vertical eddy 
viscosity, p ( x ,  y, z,  t )  is the density of water, x and y are the two horizontal co-ordinates, z is the 
vertical co-ordinate, positive upward with z=O at the still water level, and t is time. 
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The gradient eddy viscosity hypothesis has been particularly successful in modelling boundary- 
layer-type flows'. '' and is therefore consistent with the purpose of the DSS, i.e. to  model flows in 
which boundary layers occupy a significant portion of the water column. We note that E, may 
vary in the three spatial dimensions and/or time and may be specified directly or computed by 
using higher-order equations for turbulent kinetic energy, dissipation and/or mixing length.' 

Integrating equation (1) from the top of the effective bottom roughness upwards gives 
expressions for the horizontal velocity: 

H "  
-do and V(o)=Vb+-- -do. 

a - b I b  izz 
Although physically unrealistic, non-zero bottom slip velocities u b  and Vb have been included in 
equation (2) for generality. Relating Ub and V ,  to the bottom stresses zbX and t b y  via a linear slip 
boundary condition yields 

T b x / P = k U b  and zby/p=kvb,  (3) 
where k is the dimensional (lengthltime) linear slip coefficient. Substituting equation (3) in 
equation (2) gives expressions for the horizontal velocity that are entirely in terms of stress: 

Tbx H " ?bx " zzy  U(o)= - pk + __ a - b  [ 2 do and V(a)= - + __ __ do. 
Pk a - b l  PE, 

(4) 

(For a no-slip boundary condition the terms zb,/pk and Tby/pk do not appear in equation (4). The 
no-slip condition is approached as k-roo.) 

If equation (4) is substituted in the equations of motion describing nearly horizontal flow (e.g. 
equations (lO)-(l2)'), velocity can be eliminated and an equation set obtained solely in terms of 
shear stress and water surface elevation. Alternatively, equation (4) can be used to eliminate 
velocity only from equations for the vertical variation of momentum. (These equations are 
derived by subtracting the depth-averaged momentum equations from the full momentum 
equations.) If this is done, the depth-averaged continuity and momentum equations can be solved 
in standard form,'2913 with the exception that zb and the shear dispersion terms are no longer 
parametrized in terms of d,  V but rather are computed from the results of the DSS for the vertical 
variation of momentum. 

In the present paper the application and merit of the DSS technique are demonstrated using 
the linearized equations governing unstratified, nearly horizontal flow with negligible Coriolis 
force: 

atl ad 
at ax ' - +h- =O 

where, g is the acceleration due to gravity, T,(x, y, t )  is the shear stress at the free surface, 
T ~ ( x ,  y, t) is the shear stress at the bottom, d(x, y, t) is the depth-averaged velocity, defined as 
d = [ 1/(a - b)] S i  U do, and u(x, y, cr, t) is the velocity departure from depth average, defined as 
u= U - d. Equation ( 5 )  is the depth-integrated continuity equation, equation (6) is the depth- 
integrated momentum equation and equation (7) expresses the vertical variation of momentum. 
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These equations retain most of the vertical physics present in the full equation set and, for a time- 
invariant value of E,, can be solved analytically in both the horizontal and vertical direction. By 
neglecting the Coriolis force, the equations of motion are uncoupled in the two horizontal 
directions. Therefore only motion aligned with the x-direction is considered. However, as 
discussed below, the efficiency of the DSS technique for the more general case of a non-zero 
Coriolis force can be demonstrated using these results. 

Substituting equation (4) in equation (7) to eliminate u yields 

(To be consistent with the linearization of the governing equations, it has been assumed that 
h x H in equation (4).) 

Equation (8) contains both integral and differential terms; therefore it is particularly well suited 
for a spatial discretization in which z, is expressed in terms of assumed shape functions, such as in 
the spectral or finite element methods. Depending on the choice of these shape functions and the 
functional variation of E, over the depth, the velocity profile can be recovered from the stress 
profile by solving equation (4) in closed form. This is an important convenience because it avoids 
the troublesome operation of numerically integrating the near-logarithmic singularity that occurs 
in equation (4) when E,  varies with distance from a boundary. The restrictions that a closed-form 
solution for equation (4) imposes on t, and E ,  are not severe. For example, both zZ and E, may be 
expressed by polynomials that span the vertical either globally or in a piecewise manner. A 
polynomial variation of t, is consistent with either a spectral or a finite element discretization of 
equation (8); for most practical problems E, can be approximated as being piecewise linear over 
the verti~al.~~'* l4 

In the test cases presented below, the Galerkin-spectral method, with shape functions con- 
sisting of Legendre polynomials (LPs) over the interval - 1 < CT < 1, is used to discretize the VS 
(equation (7)) and the DSS (equation (8)). It has been shown for wind-driven circulation that 
velocity solutions using Legendre and Chebyshev polynomials yield solutions of virtually 
identical accuracy, that these are highly superior to velocity solutions obtained using expansions 
of trigonometric functions and that these are more accurate than velocity solutions computed 
with a second-order finite difference scheme having the same number of degrees of freed~rn.".'~ 
For further information on the use of spectral methods in three-dimensional circulation models, 
the interested reader is referred to an excellent review by Davies.' 

The Galerkin-spectral discretization for the VS is obtained by multiplying equation (7) by the 
weighting function 4,(o) and integrating from - 1 to 1, i.e. 

Integrating the stress derivative term in equation (9) by parts gives 

and substituting this in equation (9) yields 

+i + m ( l ) ~ - + m ( - l ) -  . " p "I P 
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Using the definition of the LPs (Table I), equation (11) simplifies to 

m = O  O = O ,  

Since &,(a) = 1, the operation that generates equation (1 1) is equivalent to integrating equation (7) 
over the depth when m=O. The identity in equation (12) occurs because equation (7), by 
definition, has no depth-averaged component. 

Table I. Galerkin-spectral equations 

Legendre polynomials 
do(a)= 17 
41(4=a ,  

2r+ 1 
41+ (0) = [-I r + l  abr - [L] r +  1 4r- ,, 

Stress expansion 
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The final steps in applying the Galerkin-spectral method to the VS are to substitute equation 
(1) for z,/p in equation (13) (noting that BU/ao=au/aa) and expand u as a series of LPs (Table I, 
equation (14)). The result is given by eqution (15) in Table I. Because j! 4Ja) da = 0 for n 2 1, by 
using only the n 2 1 LPs the condition j! u da = 0 is identically satisfied by the spectral solution. 
Equation (15) must be solved with the bottom boundary condition (equation (3)). After expanding 
u, this is expressed by equation (16) in Table I. 

The Galerkin-spectral discretization for the DSS is obtained by multiplying equation (8) by the 
weighting function +,,,(a) and integrating from - 1 to 1, i.e. 

Integrating the stress derivative by parts changes equation (17) to 

Using the definition of the LPs (Table I), equation (18) simplifies to 

m = O  0 = 0  

The identity in equation (19) occurs because equation (8) has no depth-averaged component. 
The final step in applying the Galerkin-spectral method for the DSS is to expand z,/p as a 

series of LPs (Table I, equation (21)). The result is given by equation (22) in Table I. The bottom 
boundary condition was introduced into equation (4) and subsequently into equation (8). 
Therefore it does not generate an extra equation as was the case for the VS. However, the stress 
expansion in equation (21) does not automatically satisfy the condition j !- u do = 0; rather, this 
must be enforced explicitly. Using equation (4) and the definition of U, this requirement generates 
the additional equation 

Substituting the expansion for ~ , / p  in equation (23) yields equation (24) in Table I. 
The Galerkin-spectral method using polynomial bases yields fully populated matricies.' 

Therefore, for the general problem, the computational effort required to set up, decompose and 
solve for the spectral coefficients in both the VS and the DSS scales with N 3 ,  where N is the 
number of LPs used in each solution. If E, is constant in time, it is necessary to set up and 
decompose the matrices only at the first time step. Subsequently, only forward and backward 
substitution are required and the computations scale as N z. When the DSS technique is used, N * 
additional operations are required to evaluate the velocity at any elevation using the closed-form 
solution to equation (4). Similarly, N 2  operations are required to explicitly evaluate the shear 
dispersion terms. If the solution over the vertical is to be used only to provide bottom stress for a 
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two-dimensional hydrodynamic model,5 it is never necessary to explicitly determine the velocity 
profile and these additional operations are not required. 

TEST CASES 

The relative merit of the DSS versus the VS was evaluated by comparing solutions computed 
numerically with analytical solutions for the problem of wind-driven circulation in a closed, 
rectangular channel aligned with the x-axis and having a constant bathymetric depth. This was 
done for a steady state case, for a periodically varying wind stress and for an instantaneously 
imposed wind stress. 

In each test case E, was assumed to be linear over the depth as expressed by 

E,W = &,(a + 1 + go) ,  (25)  

where uo E 2z,/h is the dimensionless roughness height. It is well known from theoretical, 
laboratory and field experiments that an eddy viscosity that increases linearly with distance from 
a solid boundary realistically reproduces the physics of the boundary layer near the 
Despite the fact that this does not hold over the entire depth (e.g., it has been suggested that E,  
should also increase linearly with distance below the free surface’), equation (25) is used here 
because it generates a realistic bottom boundary layer and because it simplifies the analyses of 
model results by introducing only two parameters, E,, and go, into the problem. As is shown 
below, the presence of a velocity gradient region at the bottom is sufficient to illustrate the 
advantage of the DSS over the VS. In fact, the use of an eddy viscosity that does not also give a 
boundary layer at the free surface is a considerable advantage for the VS since it eliminates the 
additional need to reproduce velocity gradients there. 

Assuming reasonable ranges for zo of 0.1-10cm and for h of 1-100m suggests values of 
do- 10-5-10-2 in equation (25). (The combination of zo= 10 cm and h =  1 m, which gives 
~ , - 1 0 - ~ ,  is not considered realistic since zo is typically 3%-10% of the physical roughness 
height. In this case the physical roughness would occupy the entire depth.) Assuming the slope of 
the variation of E ,  with z scales with U;5 (UEE,/(?b/p)), then EZo- U z h .  If U;5 varies over the 
range 0.1-10 cm s-’, then EZo- 10-3-10 m’ s-’. 

Table I shows that the VS and DSS require the specification of z,/p (which is the input forcing) 
and U. To eliminate the possibility that errors in the solution for U might affect the comparisons, 
U was obtained for each test case from an analytical solution of equations (l), (3) and (5)-(7). 
A consequence of this procedure is that errors in the VS and DSS over the vertical do not feed 
back into the solution for fl as they would if the complete problem was solved numerically. 

In all of the results presented below, bottom stresses are obtained from the VS by using 
computed bottom slip velocities and the linear slip boundary condition (equation (3)). Com- 
parisons indicated that this method gave more accurate values of bottom stress than those 
obtained by evaluating equation (1) at (T = b. (A similar conclusion was reached by Gresho et al.”) 
Velocities are obtained from the DSS by solving equation (4) analytically using the computed 
stress profiles. 

Steady state 

At steady state, equation (7) reduces to 
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Figure 1. Vertical profiles of horizontal velocity for the steady state test case 

which has the analytical solution 

where 

and K = kh/E,,  is the non-dimensional slip coefficient. The non-dimensional solutions for velocity 
are 

= 0, (29) 
k / P  

The VS and DSS are obtained from the equations in Table I by dropping the time derivatives, 
setting U=O and considering all other terms to be constant in time. 

Figure 1 presents a comparison of vertical profiles of horizontal velocity for several combina- 
tions of K and g o  computed from the analytical solution, the DSS using two LPs and the VS using 
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various numbers of LPs. Equation (27) indicates that the analytical solution for stress vanes 
linearly over the depth regardless of the form of E,.  This solution can be represented exactly by 
the DSS using only the n=O and n= 1 LPs; therefore the DSS and the analytical solution in 
Figure 1 are identical. Equation (30) indicates that the analytical solution for velocity has a 
logarithmic variation over the depth and consequently a potentially sharp gradient region near 
the bottom. In Figure l(a) the combination of a small K (large amount of slip) and a large [T,, 

minimizes the gradient region. Over most of the depth the velocity profile is nearly linear and 
therefore closely reproduced using a VS with two LPs. However, approximately five LPs are 
required to capture the mild velocity gradient near the bed. In Figure l(b) the same K is used with 
no reduced by two orders of magnitude. This has the effect of pushing the gradient region closer to 
the bottom (i.e. it is equivalent to increasing the depth by a factor of 100 for the same roughness) 
and therefore steepening the velocity gradient. Because the velocity profile is nearly linear over 
much of the depth, it is reproduced well by the VS with two LPs. However, near the bed 
approximately 10 LPs are required for the VS to capture the gradient region. As discussed below, 
this results in a poor prediction of bottom stress. 

In Figures 1 (c) and 1 (d) a high value of K is used, resulting in essentially no slip at the bottom. 
For large o0 (Figure l(c)) a velocity expansion of 10 or more LPs is required to reproduce this 
profile. Reducing go by two orders of magnitude (Figure l(d)) sharpens the profile further and 
approximately 20 LPs are required to capture the velocity profile away from the boundary. Many 
more are required to represent the gradient region near the boundary. 

Table 11. Steady state bottom stresses computed using velocity 
expansions 

tb(anal)- tb(eomp) 

Tb(snal) 
(TO K No. of LPs 

10-2 10-1 
10-2 1 
10-2 10 
10-2 102 

10-3 10-1 
10-3 1. 
10-3 10 
10- 3 102 

10-4 10-1 
10-4 1 
1 0 - 4  10 
10-4 102 

10-5 10-1 
10-5 1 
10- 5 10 
10-5 102 

10-2 103 

10- 3 103 

10-4 103 

10- 5 103 

3 
8 
9 

10 
10 

8 
21 
24 
24 
24 

22 
< 40 
< 40 
< 40 
< 40 

< 40 
< 40 
< 40 
,< 40 
< 40 

0.100 
0.09 1 
0.099 
0.078 
0.078 

0.096 
0.098 
0095 
0.098 
0.099 

0.100 
0.192* 
0.242* 
0.249* 
0.249* 

0.174* 
0.476* 
0.602* 
0.619* 
0.620* 

* This is the minimum difference obtained using no more than 40 
Legendre polynomials. 
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As noted above, an important reason for using a three-dimensional model in place of a two- 
dimensional model is the former's improved representation of the bottom stress. However, since 
stress is proportional to the velocity gradient (equation (l)), the bottom stress may still be 
represented poorly if the gradient region near the bottom is not resolved properly in a three- 
dimensional model. To illustrate this problem, a comparison was made between the analytical 
bottom stress and computed bottom stresses from the DSS and the VS over the practical range of 
K and go. The DSS reproduces bottom stress exactly using two LPs. On the other hand, Table I1 
presents a summary of the number of LPs required for the computed bottom stress using the VS 
to come within 10% of the analytical bottom stress as a function of K and go. Clearly, it is 
computationally practical to use the VS only for large roughnesses and large amounts of slip, 
both of which tend to minimize the velocity gradient at the bottom. 

Although quite simple, the steady state case demonstrates the relative ease with which a DSS 
solution can resolve a realistic boundary layer (i.e. no bottom slip and a linearly varying eddy 
viscosity) in a hydrodynamic model that explicitly includes the vertical dimension. In the 
following examples we evaluate how this highly desirable capability is affected by unsteady 
conditions. Only the no-slip case (K = 1OOO) is considered. 

Periodic forcing 

Assuming a periodic surface stress of the form z,(t)/p=(z,/p)e'"' (where w is the forcing 
frequency and i = ,/( - l)), solutions can be sought to equations (1) and (5)-(7) that have the form 
O ( t ) =  Oe'"', u(a, t)=u(o)e'"', ~ ~ ( t ) / p = ( ~ ~ / p ) e ~ ~ ~  and q(t)=qe'@'. (Note that 7,/p, U, u(o), zb/p and 
q are all complex variables; therefore they may be out of phase with each other.) Substituting these 
in equations ( 1 )  and (5)-(7) transforms the linear hydrodynamic equations into 

a i i  
ax  iwq+h- =0, 

(33) 
. a - b  a (a-b)E,au 1 ___ ~_ 

h a. [ h a , 3  = 6 ( 7 b - 7 ~  

The procedure used to solve equations (31)-(33) analytically together with the linear slip 
boundary condition has been presented previously'. l 6  and is not repeated here. Rather, the 
solutions are given without derivation in Table 111. 

Spectral approximations for the periodic case are generated by expressing BJt) = j?,eiof and 
a,(t)=a,e'"' and substituting these as well as the periodic forms of u(t), 7Jo, t ) / p ,  q , ( t ) /p ,  7b( t ) /P  

and O(t)  in equations (14)-(16), (21), (22) and (24). The resulting equations are listed in Table IV. 
The periodic solution depends on the dimensionless parameters K and oo (as found for the 

steady state solution), a dimensionless channel length L', a dimensionless frequency Q and the 
dimensionless position in the channel, x/L. L' is the ratio of the channel length L to the wave 
length of a shallow water wave having period w, equation (38). R is the ratio of the time scale for 
momentum to be transported through the water depth, h2/Ez0, and the forcing time scale l/w, 
equation (39). Assuming ranges for w of 10-3-10-5 s-', L of 1-103 km and h and U,* as given 
previously suggests L'- 10-5-102 and R-10-*-102. In all cases results are presented for 
x/L=O.5 since these are representative of the behaviour throughout the rest of the channel. 

Figures 2 and 3 present magnitude and phase portraits of the velocity structure for K = 1O00, 
L'= 1 and four combinations of oo and R. For the case Q= lo-' momentum is transported 
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Table 111. Analytical solution for the periodic test case 

1 A (a ) -A 
(34) 

u(a)E,o UOE,, A,(a) - -A,  -- 
hzslp --[ h%lP B I+-[ ‘ B  ’I’ 

+-- (0 + 1 +a,), 
h r J p  B 2+a, B 

IL’x/L)  - [ 1 - exp(IL’)] exp( - IL’x/L)  

h%lP exp(lL’) - exp( - IL’)  

W L  

whz 

E Z O  

QE-, 

I = J(iyl - 11, 

2A,( - 1 )  
Y =  ’ -n(A,  + B )  O o 7  

pl(a) = ber{ [n(a + 1 + aO)]’/’) + i bei{[R(a + 1 + o ~ ) ] ~ ’ ~ ] ,  

pZ(o) = ker { [Q(a + 1 + a0)]1/2} + i kei{ [Q(o + 1 + o , ) ] ’ / ~ } .  

(35) 

(37) 

(46) 

(47) 

Ber, bei, ker and kei are zeroth-order Kelvin functions;’’ an overdot (’) = a/&; an overbar (- ) = 4 5 do. 

through the depth in only a fraction of the forcing period. Figures 2(a), 2(b) and 3(a), 3(b) show 
that the velocity magnitude and phase obtained from the DSS using two LPs are virtually 
identical to the analytical solution and therefore that the stress variation is very close to linear 
over the depth. This linear stress variation suggests that the momentum balance over the depth is 
nearly at steady state and is consistent with the low value of R. Since steady state is approached as 
R-0, the DSS using two LPs gives a highly accurate solution for R < 10- as well. The VS is able 
to capture the phase change through the water column with a comparable number of LPs to the 
DSS. However, as was the case at steady state, for go = lo-’ approximately 10 LPs and for go 

= more than 20 LPs are required to reproduce the velocity magnitude with an accuracy 
comparable to the DSS using two LPs. 
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Table IV. Galerkin-spectral equations for the periodic test case 

Stress expansion 

For the case R =  10 the vertical momentum balance is no longer near steady state; consequen- 
tly, the DSS requires more than two LPs to capture the vertical stress variation. Figures 2(c), 2(d) 
and 3(c), 3(d) suggest that approximately four LPs may be needed by the DSS. The VS, however, 
requires at least 10 LPs for go = 

Figures 4 and 5 compare the amplitude and phase behaviour of the analytical solution for 
bottom stress with solutions obtained using the DSS and VS. These runs were made using a single 
value of no = but varying R and L'. The lo4 change in L' has minimal effect in these pictures, 
indicating that the number of LPs required for the DSS or the VS to converge to the analytical 
solution is only very weakly dependent on L'. For R < 1 the DSS with two LPs is nearly identical 
to the analytical solution, while for larger R the number of LPs required by the DSS increases to 
as many as seven for R =  lo2. Considering the fact that comparable results using the VS require 
the use of more than 20 LPs, the DSS is computationally quite superior to the VS for all 0. 

Although the Coriolis force was omitted from these test cases, the results can be used to infer 
whether a DSS will be equally effective when the Coriolis force is included. The counterparts to 
equation (33) for the case in which Coriolis is included are 

and more than 20 LPs for go = lop4. 
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where subscripts x and y have been appended to the velocity and stress terms to indicate 
components in the two horizontal directions andfis the Coriolis parameter. It has been shown' 
that the linear combinations of ux and u, 

transform equations (54) and (55) into 

Equations (56) and (57) show that the vertical structures of u +  and u -  are uncoupled and that 
each is analogous to the structure of u in the absence of the Coriolis force, except that u+ is forced 
by the frequency w + f  and u- is forced by the frequency w - c  Therefore we expect that the 
vertical structures of u+ and u -  will depend on the dimensionless frequencies R +  = R + F  and 
R -  - R -  9 respectively, where 9 zfh2/E,,. At mid latitudes f- s-', giving the range of 
8- 1 O w 3 - l O .  This yields values for R +  and 0- in the same range as Q consequently, the results 
shown in Figures 2-5 are also indicative of the performance of the DSS and the VS when the 
Coriolis force is included in the governing equations. 

Transient forcing 

Analytical solutions can be obtained to equations (1) and (5)-(7) for a transient forcing by 
decomposing the forcing into its Fourier components, using the periodic solutions presented in 
Table I11 for each Fourier component and superimposing the resulting periodic solutions. In this 
subsection an illustrative set of results for bottom stress are presented for the often-used problem 
of an instantaneously imposed wind on an initially quiescent channel. Representative values of 
L = 100 km, h = 50 m, o, = 0.01 and E,, = 0.5 mz s-  are used. 

An instantaneously imposed forcing cannot be represented exactly by a finite Fourier series; 
however, 

sin[(2n-l)nt/T] 
n = l  n(2n-1) 

gives an approximation to a square wave of period T, as shown in Figure 6. By selecting T to be 

0 5  
F 

0 

+/r 

Figure 6. Fourier series approximation to a square wave (equation (58)) used to represent an instantaneously applied 
wind for the transient test case 
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Figure 7. Time histories of bottom stress for the transient test case 

much larger than the time required for the basin to reach steady state and considering only the 
period O<t/T< 1, a reasonable representation of an instantaneously imposed wind can be 
obtained and used to develop an approximate analytical solution. Sensitivity analyses indicated 
that when 50 or more terms were used in equation (58),  minimal change occurred in the analytical 
solution of the basin response and any change that did occur was limited to times very close to 
zero (i.e. of the order of t /T< 1%). Seventy-five terms (N = 74) were used in equation (58)  for the 
solution shown in Figure 6 and the runs presented below. 

The VS and the DSS for the transient test case were obtained by discretizing equations (15) and 
(22) in time using a Crank-Nicholson scheme. As discussed above, the analytical solution for U 
was used to force these equations, thereby eliminating any feedback of error from the vertical 
representation into u. Figure 7 presents a comparison between bottom stresses obtained 
analytically and from the VS and the DSS. The DSS with three LPs is quite close to the analytical 
solution except very near t = O  (due primarily to the overshoot in the forcing in Figure 6). 
Conversely, 15 or more LPs are required for the VS to attain comparable accuracy. We note that 
this test case uses oo at the upper limit of the practical range and therefore is the easiest case for 
the VS to capture. For smaller values of oo the transient performance of the VS becomes even 
poorer, as suggested by the steady state results in Table 11. 

CONCLUSIONS 

A simple technique has been presented that allows a numerical solution to be sought for the 
vertical variation of shear stress as a substitute for the vertical variation of velocity in a three- 
dimensional hydrodynamic model. The rationale for preferring a solution for shear stress to one 
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for velocity is that shear stress tends to vary more slowly over the vertical than velocity, 
particularly near boundaries. 

In its most general form the DSS technique depends only on the validity of an eddy viscosity 
relation between the shear stress and the vertical gradient of velocity. The equations that must be 
solved to use the DSS technique contain both integral and differential terms; therefore it is 
convenient to use a discretization over the vertical that expresses stress in terms of assumed shape 
functions. Depending on the choice of shape functions and the functional variation of eddy 
viscosity over the depth, the velocity profile can be recovered from the stress profile by solving 
equation (4) in closed form. Under these conditions the difficulties associated with numerically 
integrating a near-logarithmic singularity are avoided. Most practical problems can be solved 
subject to this restriction by allowing a global or piecewise polynomial variation of 7, and a 
piecewise linear variation of E,. 

Using the Galerkin-spectral method with Legendre polynomials to discretize over the vertical, 
solutions obtained using the DSS and the VS techniques were compared with analytical solutions 
for the test case of wind-driven circulation in an unstratified, closed, rectangular channel 
governed by the linear equations of motion. When the forcing time scale had an order of 
magnitude equal to or longer than the time scale for momentum transport over the depth (a< l), 
a DSS using an expansion of only two LPs gave nearly exact results. For higher-frequency forcing 
or a slower vertical momentum transport rate the DSS required more LPs; however, for most 
practical cases the computational effort remained very reasonable. In no case was the com- 
putational effort required by the VS remotely competitive with the DSS when a physically 
realistic boundary layer was included. This result is made even more significant by the fact that 
the eddy viscosity used here favoured the VS because it produced only a single boundary layer at 
the bottom rather than a boundary layer at the bottom and at the free surface. Had both 
boundary layers been included, the computational effort associated with the VS would have been 
substantially greater while the effort needed for the DSS would have remained essentially the 
same. 

The DSS technique has been formulated for the linearized governing equations considered here 
by solving a two-dimensional problem for the depth-averaged velocity and a one-dimensional 
problem for the vertical distribution of shear stress. A directly analogous procedure can be used 
for the non-linear problem if the convective terms are neglected in the equations for the vertical 
variation of In this case the vertical problem can be solved locally using the DSS 
at each horizontal grid point. The computed bottom stress and the shear dispersion terms can 
then be fed into the non-linear equations for the depth-averaged velocity to complete the solution. 
Because the vertical problem is computed locally, the coarseness of the discretization used for the 
DSS can vary horizontally, depending on the ratio of the forcing time scale to the momentum 
transport time scale (e.g. a). This approach can be extended to the fully non-linear, three- 
dimensional equations for nearly horizontal flow by treating the convective terms in the DSS 
equations for the vertical variation of momentum explicitly18 or iterati~ely.~ 

Our experience using the DSS with the Galerkin-spectral expansion for the linearized 
governing equations suggests that for realistic, unstratified, coastal applications with relatively 
simple eddy viscosity profiles, highly accurate transient solutions should require only three to 
four LPs. In practical applications in which E, varies in time, the N 3  computational burden 
associated with the Galerkin-spectral method is of little consequence for very low numbers of 
LPs (e.g. N < 5). However, this changes rapidly as the number of LPs increases. We are presently 
investigating the use of the finite element method with linear bases to discretize the DSS 
equations over the vertical. Preliminary results seem quite promising because the problem can be 
arranged to give a tridiagonal system of equations and consequently a highly efficient numerical 
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solution for even a large number of elements. Also, the closed-form solution of equation (4) is 
simplified and the element sizes can be adjusted to achieve an SZ (based on the element size rather 
than the entire depth) that allows the stress to be represented accurately by a linear function 
across the element. Alternatively, the element could be selected to match the computational grid 
for E ,  if a higher-order closure model is used. 

The DSS technique should be quite beneficial in modelling relatively shallow water bodies in 
which the bottom and surface boundary layers, or velocity gradients generated across sharp 
density interfaces, occupy a significant portion of the water depth. 
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